Sum of primes
Introduction
We have :
n
: moduluse
: public exponentc
: ciphertext
Additionally, we have a special variable :
x
: sum ofp
andq
The goal is to find the cleartext.
Maths
We know that :
$$n = p * q$$ $$x = p + q$$
Let's try to do something with it :
$$p = x - q$$
$$n = (x - q) * q$$
$$n = -q^2 + x \times q$$
$$-q^2 + x \times q - n = 0$$
We have a second degree equation, let's solve it :
$$delta = x^2 - 4 \times (-1) \times (-n)$$
$$p = \frac{- x + \sqrt{delta}}{2 * -1}$$ $$q = \frac{- x - \sqrt{delta}}{2 * -1}$$
Example
Write-up for the challenge
Sum-O-Primes
frompicoCTF 2022
.
Source code :
from gmpy2 import isqrt
from Crypto.Util.number import long_to_bytes
x = 0x198e800b4f9e29e69889bc7a42b92dbd764cb22dbeb5fb81b1d9778bfe8c4b85d08a7f990019d537b6856aa1ff7355d0bef66c0a5c954bb4b7e58ac094c42ac1c23d23f8f763e41bbebdfa985505ab3571f8355290d2ca66ac333c4e30f1b7354c37d67db2c13c7e07ca3b6d98283f5042a55e23796ca227f428e0d3a83057510
n = 0xa0ab034d978fdd92e73f3f7536f4f2ff5f4dee70b5f1d319903ec65f2a8ffe729688452d2c1f25a7c330e6bb532580094196f888a20ba7556f0907d8a4884bddbde4c4361582fcf163799a0f49b9d196b32012e1b5a4dabd2a6c9e9a47173f903ae1ebe2db66ebf55471982d52e6cbeb8060dd0f01d950a30ac5a830ad2414c86f97703717752bd20abb528f7738e010a7c3e8116b2c3a6706d900d83ff4afc7ca8b47f6c19d1de00c7ea8666c617a5e33d600b381b263662ad17a5d4262a819a57b357fee702538355ee7723f9c694a3c98999bc2432658c7798119d7a54d5e4c01447c7afcdf36110be0be195cea0828b17f5e86b4702341e7a37babb3db07
c = 0x497f4e814e3d7093d49c33c9b743748455b82496af6a8900e6d3c899b58a5e8d32fde34dccf882a87859d8508a18fe23088c8b58dd33decb3e9f4c1737c85f0b66114e62efe0da72fcee95619e4d76e7c485f161464f7067237bbcc213bd02b5e2816208333146652395e07f4245dfd654755417d35cc0a27933dd48ab219f31ed73820087c1ec7e2150caf4f5f0de052d14a2e492715e3a3ca24de41240d49494532b4d5fa54c59db08c6d94938f33a489c24a9b4a7d6b2d57164ce7aacdd0707302fded17671d197485c764064ed97d2560274b5ed4994446e8f790e16e05e8dd4b2d39e228a715f70bd012eb7eaec65e67734fad95f55be307e26b2106226
e = 65537
delta = x ** 2 - 4 * (-1) * (-n)
d_sqrt = isqrt(delta)
p = (- x + d_sqrt) // -2
q = (- x - d_sqrt) // -2
phi_n = (p - 1) * (q - 1)
d = pow(e, -1, phi_n)
print("d =", d)
m = pow(c, d, n)
print("m =", long_to_bytes(m))
Output :
d = 1127439399893923133912707628369838645619413486081153868194322549263430464271487628166920090846284414060674923759835122712920275782145638815730909265745188866694498218417163612150327863917168285069522800442880578146452984443358315535368229409369978855340777181509567431540796668618072436317237316896508417951624330920268227424920546346184610507679335002930594105592638984054398797689679876059800971426371265461357943025665418837577601422699946107705988452212001703843148158300307727551909739089351035197873956373620030322437138163639780814925877499529967026959027228892716485664996757386343014299196168286140987346985
m = b'picoCTF{ee326097}'